

III Semester M.Sc. Degree Examination, January 2019 (CBCS – Y2K17 Scheme) MATHEMATICS M 304 T: Linear Algebra

Time: 3 Hours

Max. Marks: 70

Instructions: i) Answer any five (5) full questions.

ii) All questions carry equal marks.

- a) Let A be an algebra with unit element over F and suppose that A is of dimension n over F. Then prove that every element in A satisfies some non-trivial polynomial in F[x] of degree atmost n.
 - b) If V is a finite dimensional vector space over F, then prove that T∈A_F(V) is invertible if and only if the constant term of the minimal polynomial of T is non-zero.
 - c) If V is a finite dimensional vector space over F, then prove that $T \in A_F(V)$ is regular if and only if T maps V onto itself. (3+5+6)
- a) Define characteristic roots of a linear transformation. Prove that the non-zero characteristic vectors belonging to distinct characteristic roots are linearly independent.
 - b) If $\lambda \in F$ is a characteristic value of $T \in A_F(V)$, then for any $q(x) \in F[x]$, prove that $q(\lambda)$ is a characteristic root of q(T).
 - c) If V is an n-dimensional vector space over F and if $T \in A_F(V)$ has the matrix $m_1(T)$ in the basis $\{v_1, v_2, ... v_n\}$ and the matrix $m_2(T)$ in the basis $\{w_1, w_2, ... w_n\}$ of V, then prove that there exists a matrix C in F_n such that $m_2(T) = C.m_1(T).C^{-1}$. (5+4+5)
- 3. a) Let U, V and W be finite dimensional vector spaces over a field F. Let T be a linear transformation from U to V and let S be a linear transformation from V to W with respect to the ordered bases B_1 , B_2 , B_3 . If $A = [\alpha_{ij}]$, $B = [\beta_{ij}]$, $C = [\gamma_{ij}]$ are matrices of T, S and TS respectively in the bases B_1B_2 , B_2B_3 and B_1B_3 respectively, then prove that C = BA.

- b) Let V be a vector space over a field F. Then prove that the double dual V** is isomorphic to V.
- c) Define the change of coordinate matrix. Let

$$b_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, C_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, C_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}.$$

Consider basis $B = \{b_1, b_2\}$, $C = \{c_1, c_2\}$. Find the change of coordinate matrix from B to C and C to B. (5+5+4)

- a) If T∈A_F(V) has all its characteristic roots in F, then show that there exists a basis of V in which the matrix of T is triangular.
 - b) State and prove Cayley-Hamilton theorem.
 - c) Let $T \in A_F(V)$ and V_1 be a n_1 -dimensional sub-space of V spanned by $\{v, T(v), ..., T^{n_1-1}(v)\}$ where $v \neq 0$. If $u \in V_1$ is such that $T^{n_1-k}(u) = 0$, $0 \leq k \leq n_1$, then prove that $u = T^k(u_0)$ for some $u_0 \in V_1$. (6+4+4)
- 5. a) Define a nilpotent transformation. Show that two nilpotent transformations are similar if and only if they have the same invariants.
 - b) Define a basic Jordan block and explain with an example prove that two linear transformations are similar if and only if they can be brought to the same Jordan cannonical form. (7+7)
- i. a) Let V be an inner product space, and u, v∈V. Then prove the following:

i)
$$||u + v||^2 - ||u - v||^2 = 4 < u, v > v$$

ii)
$$||u + v||^2 + ||u - v||^2 = 2 (||u||^2 + ||v||^2)$$
.

- b) Define an orthogonal complement. Let u=(-1,4,-3) be a vector in the inner product space with standard inner product. Find a basis of the subspace u^{\perp} of \mathbb{R}^3 .
- c) Orthodiagonalize the following symmetric matrix:

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

- 7. a) Define the following with suitable examples:
 - i) Positive definite quadratic form
 - ii) Positive semidefinite quadratic form
 - iii) Negative definite quadratic form
 - iv) Negative semidefinite quadratic form.

Is
$$Q(x) = -3x^2 + 4x_1^2 - 11x_1x_4 + 5x_2x_4 + 18x_1x_2 + 16x_4^2$$

positive definite? Justify your answer.

b) Decompose the following matrix into its singular value decomposition:

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \tag{6+8}$$

- 8. a) Define symmetric bilinear form with an example. Let B be a bilinear form on a finite dimensional vector space V and let β be an ordered basis of V. Then show that B is symmetric if and only if $\psi_{\beta}(B)$ is symmetric.
 - b) State and prove the Sylvester's law of inertia for real quadratic forms.
 - c) Find the rank and signature of the real quadratic form

$$x_1^2 - 4x_1x_2 + x_2^2$$
. (6+6+2)